Amorf ve nano-boyutlu HoBO3.2.8H2O bileşiğinin sentezi ve karakterizasyonu

Berna Bülbül

Öz


Bu çalışmada ilk defa amorf ve nano-yapılı HoBO3.2.8H2O bileşiği, tamponlu-çöktürme yöntemiyle başarılı bir şekilde sentezlendi. Sentezlenen bileşiğin FTIR spektrumunda, 1393 cm-1 ([BO3] asimetrik gerilme), 935 cm-1 ([BO3] simetrik gerilme) ve 681 cm-1 ([BO3] düzlem dışı bükülme) dalga sayılarında üç temel titreşim bandı gözlendi. Bu titreşim bantları, HoBO3.2.8H2O bileşiğinin kimyasal yapısında, düzlem üçgen [BO3] gruplarının bulunduğunu ortaya koydu. XRD analizi ile sentezlenen ürünün amorf özellikte olduğu belirlendi. ICP-MS kullanılarak bileşikteki Ho/B oranı 1.02 olarak hesaplandı. TG/DTG eğrisinde, 303K ve 523 K sıcaklık aralığındaki, yaklaşık % 17.5' lik ilk kütle kaybı, bileşiğin yapısında 2.8 mol kristal su bulunduğunu gösterdi. 523 K ve 693 K sıcaklık aralığındaki ikinci kütle kaybı ise, HoBO3.2.8H2O nano-parçacıklarının yüzeyinde yaklaşık % 4 oranında PEG-2000 moleküllerinin tutunduğunu ortaya koydu. Nano-parçacıkların SEM ve TEM fotoğrafları ile ortalama parçacık boyutu ve standart sapmasının 15±6 nm., şeklinin ise küresele benzer özellikte olduğu ispatlandı. Enerji bant aralığı 5.3 eV olarak hesaplandı. Sentezlenen HoBO3.2.8H2O bileşiğinin ve polimerler ile hazırlanan nano-kompozitlerinin malzeme bilimi ve tıp alanlarındaki uygulamalarda kullanılması öngörülmektedir.


Tam Metin:

PDF

Referanslar


Boyer, D., Bertrand, G., Mahiou, R., A spectroscopic study of the vaterite form YBO3:Eu+3 processed by sol-gel technique, Journal of Luminescence, 104, 229-237, (2003).

Chinn, S., Hong, H. Y. P., Fluorescence and lasing properties of NdNa5(WO4)4, K3Nd(PO4)2 and Na3Nd(PO4)2, Optics Communications, 18, 87-88, (1976).

Meyer, J., Trikline Orthoborate der Seltenen Erden, Naturwissenschaften, 59, 215-215, (1972).

Li, L., Lu, P., Wang, Y., Jin, X., Li, G., Wang, Y., You, L., Lin, J., Synthesis of rare earth polyborates using molten boric acid as a flux, Chemistry of Materials, 14, 4963-4968, (2002).

Li, L., Jin, X., Li, G., Wang, Y., Liao, F., Yao, G., Lin, J., Novel Rare Earth Polyborates. Part 2. Syntheses and Structures, Chemistry of Materials , 15, 2253-2260, (2003).

Nikelski, T., Schäfer, M. C., Schleid, T., La4B14O27: Ein Lanthan‐ultra‐Oxoborat mit Raumnetzstruktur, Zeitschrift für Anorganische und Allgemeine Chemie, 634, 49-55, (2008).

Goubin, F., Montardi, Y., Deniard, P., Rocquefelte, X., Brec, R., Jobic, S., Optical properties of CeBO3 and CeB3O6 compounds: first-principles calculations and experimental results, Journal of Solid State Chemistry, 177, 89-100, (2004).

Emme, H., Heymann, G., Haberer, A., Huppertz, H., High-Pressure Syntheses, Crystal Structures, and Thermal Behaviour of β-Re(BO2)3 (Re = Nd, Sm, Gd), Zeitschrift für Naturforschung B, 62, 765-770, (2007).

Emme, H., Despotopoulou, C., Huppertz, H., High-Pressure Synthesis, Crystal Structive of the Structurally New Orthorombic Rare Earth Meta-Oxoborates γ-Re(BO2)3 Re=La-Nd, Zeitschrift für Anorganische und Allgemeine Chemie, 630, 2450-2457, (2004).

Heymann, G., Soltner, T., Huppertz, H., δ-La(BO2)3 (δ-LaB3O6): A new high-presssure modification on lanthanum meta-oxoborate, Solid State Sciences, 8, 821-829, (2006).

Haberer, A., Heymann, G., Huppertz, H., Pr4B10O11: A new Composition of Rare Earth Borates by High-Pressure/High-Temperature Synthesis, Journal of Solid State Chemistry, 180, 1595-1600, (2007).

Emme, H., Huppertz, H., Gd2B4O9: Ein weiteres Oxoborat mit kanten-verknüpften BO4-Tetraedern, Zeitschrift für Anorganische und Allgemeine Chemie, 628, 2165-2170, (2002).

Huppertz, H., Altmannshofer, S., Heymann, G., High-Pressure Preparation, Crystal Structure, and Properties of the New Oxoborate β-Dy2B4O9, Journal of Solid State Chemistry, 170, 320-329, (2003).

Emme, H., Valldor, M., Pöttgen, R., Huppertz,H., (2005). Associating Borate and Slicate Chemistry by Extreme conditions High-Pressure Synthesis, Crystal Structure and Properties of the Novel Borates RE3B5O12, Chemistry of Materials, 17, 2707-2715, (2005).

Huppertz, H., Eltz, B., Multianvil High-Pressure Synthesis of, Dy4B6O15: The First Oxoborate with Edge Sharing BO4 Tetrahedra, Journal of American Chemical Society, 124, 9376-9377, (2002).

Hosokawa, S., Tanaka, Y., Iwamoto, S., Inoue, M., Morphology and structure of rare earth borate (REBO3) synthesized by glycothermal reaction, Journal of Materials Science, 43, 2276-2285, (2008).

Cohen-Adad, M. Th., Aloui-Lebbou, O., Goutaudier, C., Panczer, G., Dujardin, C., Pedrini, C., Florian, P., Massiot, D., Gerard, F., Kappenstein, Ch., Gadolinium and Yttrium Borates: Thermal Behavior and Structural Considerations, Journal of Solid State Chemistry, 154, 204-213, (2000).

Müller-Bunz, H., Nikelski, Schleid, Th., Single Crystals of the Neodymium(III) meta-Borate Nd(BO2)3 and ortho-Borate NdBO3, Zeitschrift für Naturforschung B, 58, 375-380, (2003).

Huppertz, H., Multianvil High-Pressure Synthesis and Crystal Structure of β-YbBO3, Zeitschrift für Naturforschung B, 56, 697-703, (2001).

Noirault, S., Joubert, O., Caldes, M. T., Piffard, Y., High‐temperature form of neodymium orthoborate, NdBO3, Acta Crystallographica Section E, 62, 228-230, (2006).

Huppertz, H., Eltz, B. Hoffmann, R. D., Piotrowski, H., Multianvil High-Pressure Syntheses of Crystal Structure of the New Rare Earth Oxoborates χ-DyBO3 and χ-ErBO3, Journal of Solid State Chemistry, 166, 203-212, (2002).

Lemanceau, S., Bertrand-Chadeyron, G., Mahiou, R., El-Ghozzi, M., Cousseins, J. C., Conflant, P., Vannier, R. N., Synthesis and Characterization of H-LnBO3 Orthoborates (Ln=La, Nd, Sm, and Eu), Journal of Solid State Chemistry, 148, 229-235, (1999).

Dzhurinskii, B. F., Ilyukhin, A. B., Rare-Earth and lead mixed anionic oxoborates, Crystallography Reports, 47, 397-403, (2002).

Lin, J. H., You, L. P., Lu, G. X., Yang, L. Q., Su, M. Z., Structural and luminescent properties of Eu3+ doped Gd17.33(BO3)4(B2O5)2O16, Journal of Materials Chemistry, 8, 1051-1054, (1998).

Noirault, S., Celerier, S., Joubert, O., Caldes, M. T., Piffard, Y., Effects of Water Uptake on the Inherently Oxygen-Deficient Compounds Ln26O27(BO3)8 (Ln = La, Nd), Inorganic Chemistry, 46, 9961-9967, (2007).

Hering, A. S., Haberer, A., Kaindl, R., Huppertz, H., High-pressure synthesis and crystal structure of the new holmium oxoborate Ho31O27(BO3)3(BO4)6, Solid State Sciences, 12, 1993-2002, (2010).

Li, L. Y., Lu, P. C., Wang, Y. Y., Jin, X. L., Li, G. B., Wang, Y. X., You, L. P., Lin, J. H., Synthesis of Rare Earth Polyborates Using Molten Boric Acid as a Flux, Chemistry of Materials, 14, 4963–4968, (2002).

Li, L. Y., Jin, X. L., Li, G. B., Wang, Y. X., Liao, F. H., Yao, G. Q., Lin, J. H., Novel Rare Earth Polyborates. 2. Syntheses and Structures, Chemistry of Materials, 15, 2253–2260, (2003).

Ivanova, A. G., Belokoneva, E. L., Dimitrova, O. V., Mochenova, N. N., New borate LaB5O8(OH)2 1.5H2O with a {4[3T+ Δ]∞∞+ Δ}∞∞∞complex framework. Its place in the structural system based on symmetry and topology analysis in terms of the OD theory, Russian Journal Inorganic Chemistry, 51, 862–868, (2006).

Cong, R., Yang, T., Wang, Z., Sun, J., Liao, F., Wang, Y., Lin J., Syntheses, Structure, and Luminescent Properties of Novel Hydrated Rare Earth Borates Ln2B6O10(OH)4.H2O (Ln = Pr, Nd, Sm, Eu, Gd, Dy, Ho, and Y), Inorganic Chemistry, 50, 1767-1774, (2011).

Huppertz, H., Multianvil high-pressure/high-temperature preparation, crystal structure, and properties of the new oxoborates, Dy4B6O14(OH)2 and Ho4B6O14(OH)2, Journal of Solid State Chemistry, 177, 3700–3708, (2004).

Baudrier-Raybaut, M., Haidar, R., Kupecek, P., Lemasson, P., Rosencher, E., Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials, Nature, 432, 374–376, (2004).

Jiang, X. C., Yan, C. H., Sun, L. D., Wei, Z. G., Liao, C. S., Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties, Journal of Solid State Chemistry, 175, 245–251, (2003).

Henkes, A. E., Schaak, R. E., Synthesis of nanocrystalline REBO3 (RE= Y, Nd, Sm, Eu, Gd, Ho) and YBO3:Eu using a borohydride-based solution precursor route, Journal of Solid State Chemistry, 181, 3264–3268, (2008).

Xu, Z., Li, C., Cheng, Z., Zhang, C., Li, G., Peng, C., Lin, J., Self-assembled 3D architectures of lanthanide orthoborate: hydrothermal synthesis and luminescence properties, CrystEngComm, 12, 549–557, (2010).

Li, Z., Zeng, J., Li, Y., Solvothermal Route to Synthesize Well‐Dispersed YBO3:Eu Nanocrystals, Small, 3, 438–443, (2007).

https://www.makaleler.com/gelecegin-elementlerinden-holmiyum-nedir

Schott, J., Kretzschmar, J., Acker, M., Eidner, S, Kumke, M. U., Drobot, B., Barkleit, A., Taut, S., Brendler, V., Stumpf, T., Formation of a Eu(III) borate solid species from a weak Eu(III) borate complex in aqueous solution, Dalton Transactions, 43, 11516-11528, (2014).

Peak, D., Luther III, G. W., Sparks, D., ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide, Geochimica et Cosmochimica Acta, 67, 2551-2560, (2003).

Lopez, R., Gomez R., Band-Gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study, Journal of Sol-Gel Science and Technology, 61, 1-7, (2012).

McLean, T., The absorption edge spectrum of semiconductors, Progress in Semiconductors, 5, 53-102, (1960).


Refback'ler

  • Şu halde refbacks yoktur.


Telif Hakkı (c) 2019 Berna Bülbül

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.