The structural and optical properties of Al and Mg doped ZnO synthesized by solid state reaction method

Ozlem Bilgili


In this study, the structural and optical properties of Al and Mg doped zinc oxide Zn0.98M0.02O (M= Al, Mg) prepared by solid state reaction method is investigated.  X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV-Visible spectroscopy (UV–Vis) and Fourier Transform Infrared (FTIR) spectroscopy were employed to study the structural and optical properties.  With XRD analysis, it was revealed that all the samples are hexagonal wurtzite structure and exhibit no impurity phases.  The reflectance spectra was used to determine the optical band gap of the samples.  And it was found that undoped ZnO sample has an energy band gap of 3.16 eV which increases with Al and Mg doping, probably driven by the decrease in the lattice parameters.  The structural bond vibrations of undoped and doped ZnO were analysed by FTIR spectroscopy, and it was seen that the broad absorption band is at approximately 550 cm-1 for all the samples, which corresponds to the stretching vibration of Zn–O bond.

Anahtar Kelimeler

Semiconductors; ZnO; XRD; UV-Visible spectroscopy; FTIR; SEM

Tam Metin:



Abaira, R., Dammak, T., Matoussi, A., Younes, A., Structural and optical properties of zinc oxide doped by V2O5 synthesized by solid-state reaction, Superlattices and Microstructures, 91, 365-374, (2016).

Koseoglu, Y., Durmaz, Y. C., Yilgin, R., Rapid synthesis and room temperature ferromagnetism of Ni doped ZnO DMS nanoflakes, Ceramics International, 40, 10685-10691, (2014).

Akilan, T., Srinivasan, N., Saravanan, R., Magnetic and optical properties of Ti doped ZnO prepared by solid state reaction method, Materials Science in Semiconductor Processing, 30, 381-387, (2015).

Jin, C., Yuan, X., Ge, W., Hong, J., Xin, X., Synthesis of ZnO nanorods by solid state reaction at room temperature, Nanotechnology, 14. 667-669, (2003).

Das, T., Das, B. K., Parashar, K., Parashar, S. K., Temperature and frequency dependence electrical properties of Zn1-xCaxO nanoceramic, Acta Physica Polonica A, 130, 1358-1362, (2016).

Elilarassi, R., Chandrasekaran, G., Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method, Journal of Materials Science Materials in Electronics, 21, 1168-1173, (2010).

Lin, J. M., Zhang, Y. Z., Ye, Z. Z., Gu, X. Q., Pan, X. H., Yang, Y. F., Lu, J. G., He, H. P., Zhao, B. H., Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition, Applied Surface Science, 255, 6460–6463, (2009).

Ahn, G. Y., Park, S., Kim, C. S., Enhanced ferromagnetic properties of diluted Fe doped ZnO with hydrogen treatment, Journal of Magnetism and Magnetic Materials, 303, 329-331, (2006).

Ahmed, S. A., Effects of annealing temperature and dopant concentration on the structure, optical, and magnetic properties of Cu-doped ZnO nanopowders, Journal of Materials Science Materials in Electronics, 28, 3733-3739, (2017).

Karamat, S., Ke, C., Tan, T. L., Zhou, W., Lee, P., Rawat, R. S., Investigation of impurity phase formation for (ZnO)1-x(TMO)x bulk samples formed by ball milling, Applied Surface Science, 255, 4814-4820, (2009).

Nahm, C., Nb2O5 doping effect on electrical properties of ZnO–V2O5–Mn3O4 varistor ceramics, Ceramics International, 38. 5281–5285, (2012).

Ahmed, S. A., Effects of Cu and Mn dopings on the structural, optical, and magnetic properties of Zn0.98Fe0.02O nanopowders, Journal of Materials Science, 52, 4977–4987, (2017).

Modwi, A., Lemine, O. M., Alshammari, M., Houas, A., Ferromagnetism at room temperature in Zn0.95Cu0.05O nanoparticles synthesized by sol-gel method, Materials Letters, 194, 98–101, (2017).

Shayesteh S. F., Dizgah, A. A., Effect of doping and annealing on the physical properties of ZnO:Mg nanoparticles, Pramana journal of physics, 81, 319–330, (2013).

Hallani, G. E., Nasih, S., Fazouan, N., Liba, A., Khuili, M., Sajieddine, M., Mabrouki, M., Laanab, L. Atmani, E. H., Comparative study for highly Al and Mg doped ZnO thin films elaborated by sol gel method for photovoltaic application, Journal of Applied Physics, 121, 135103, (2017).

Chauhan, J., Shrivastav, N., Dugaya, A., Pandey, D., Synthesis and Characterization of Ni and Cu Doped ZnO. Journal of Nanomed Nanotechnol., 8, (2017).

Liu, Y., Yang, J., Guan, Q., Yang, L., Zhang, Y., Wang, Y., Feng, B., Cao, J., Liu, X., Yang, Y., Wei, M., Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol–gel method, Journal of Alloys and Compounds, 486. 835–838, (2009).

Kuo, S., Chen, W., Lai, F., Cheng, C., Kuo, S., Wang, H., Hsieh, W., Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films, Journal of Crystal Growth, 287, 78–84, (2006).

Akdağ, A., Budak, H. F., Yılmaz, M., Efe, A., Büyükaydın, M., Can, M., Turgut, G., Sönmez, E., Structural and Morphological Properties of Al doped ZnO Nanoparticles, Journal of Physics: Conference Series, 707, 012020, (2016).

Zhou, H., Yi, D., Yu, Z., Xiao, L., Li, J., Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties, Thin Solid Films, 515, 6909–6914, (2007).

Garces, F. A., Budini, N., Koropecki, R. R., Arce, R. D., Structural Analysis of ZnO(:Al,Mg) Thin Films by X-ray Diffraction, Procedia Materials Science, 8, 551 –560, (2015).

Chitraa, M., Uthayarani, K., Rajasekaran, N., Girijac, E. K., Preparation and characterisation of Al doped ZnO nanopowders, Physics Procedia, 49, 177–182, (2013).

Köseoğlu, Y., Rapid synthesis of room temperature ferromagnetic Fe and Co co-doped ZnO DMS nanoparticles, Ceramics International, 41, 11655–11661, (2015).

Ghosh, A., Kumari, N., Bhattacharjee, A., Influence of Cu doping on the structural, electrical and optical properties of ZnO, Pramana journal of physics, 84, 621–635, (2015).

Osali, S., Esfahani, H., Karami, H., Effect of Al doping on crystallography and electro-optical properties of ZnO semiconductor thin films prepared by electrospinning, Solid State Sciences, 83, 90–98, (2018).

Suwanboon, S., Amornpitoksuk, P., Preparation of Mg-doped ZnO nanoparticles by mechanical milling and their optical properties, Procedia Engineering, 32, 821–826, (2012).

Beltran, J. J., Osorio, J. A. , Barrero, C. A., Hanna, C. B., Punnoose, A., Magnetic properties of Fe doped, Co doped, and Fe+Co co-doped ZnO, Journal of Applied Physics, 113, 17C308, (2013).

Mote, V. D., Dargad, J. S., Dole, B. N., Effect of Mn Doping Concentration on Structural, Morphological and Optical Studies of ZnO Nano-particles. Nanoscience and Nanoengineering, 1, 116-122, (2013).

Seetawan, U., Jugsujinda, S., Seetawan, T., Ratchasin, A., Euvananont, C., Junin, C., Thanachayanont, C., Chainaronk, P., Effect of Calcinations Temperature on Crystallography and Nanoparticles in ZnO Disk, Materials Sciences and Applications, 2, 1302-1306, (2011).

Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin,V., Cho, S.-J., Morkoç, H., A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 98, 041301, (2005).

Baghdad, R., Lemee, N., Lamura, G., Zeinert, A., Hadj-Zoubir, N., Bousmaha, M., Bezzerrouk, H. Bouyanfif, M. A., Allouche, B., Zellama, K., Structural and magnetic properties of Co-doped ZnO thin films grown by ultrasonic spray pyrolysis method, Superlattices and Microstructures, 104, 553-569, (2017).

Pradeev raj, K., Sadaiyandi, K., Kennedy, A., Sagadevan, S., Chowdhury, Z. Z., Johan, M. R. B., Aziz, F. A., Rafique, R. F., Selvi, R. T., Bala, R. R., Influence of Mg Doping on ZnO, Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis, Nanoscale Research Letters, 13, 229, (2018).

Fajar, A., Kartini, G. E., Mugirahardjo, H., Ihsan, M., Crystallite Size and Microstrain Measurement of Cathode Material after Mechanical Milling using Neutron Diffraction Technique, Atom Indonesia, 36, 111-115, (2010).

Kumar, B. R., Hymavathi, B., X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson–Hall and size-strain plot methods, Journal of Asian Ceramic Societies, 5, 94–103, (2017).

Saravanan, S., Silambarasan, M., Soga, T., Structural, morphological and optical studies of Ag-doped ZnO nanoparticles synthesized by simple solution combustion method, Japanese Journal of Applied Physics, 53, 11RF01, (2014).

Yakuphanoglu, F., Electrical characterization and device characterization of ZnO microring shaped films by sol–gel method, Journal of Alloys and Compounds, 507, 184–189, (2010).

Aydın, C., Abd El, M. S., Zheng, K., Yahia, I. S., Yakuphanoglu, F., Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol–gel calcination technique, Optics & Laser Technology, 48, 447–452, (2013).

Caglar, M., Ilican, S., Caglar, Y., Yakuphanoglu, F., Electrical conductivity and optical properties of ZnO nanostructured thin film, Applied Surface Science, 255, 4491–4496, (2009).

Suwanboon, S., Amornpitoksuk, P., Sukolrat, A., Dependence of optical properties on doping metal, crystallite size and defect concentration ofbM-doped ZnO nanopowders (M= Al, Mg, Ti), Ceramics International, 37, 1359–1365, (2011).

Suwanboon, S., Amornpitoksuk, P., Bangrak, P., Synthesis, characterization and optical properties of Zn1-xTixO nanoparticles prepared via a high-energy ball milling technique, Ceramics International, 37, 333–340, (2011).

Xiong, G., Pal, U., Serrano, J. G., Ucer, K. B., Williams, R. T., Photoluminescence and FTIR study of ZnO nanoparticles: the impurity and defect perspective, Physica status solidi (c), 3, 3577–3581, (2006).

Singhal, S., Kaur, J., Namgyal, T., Sharma, R., Cu-doped ZnO nanoparticles: Synthesis, structural and electrical properties, Physica B, 407, 1223–1226, (2012).

Mallika, A. N., Reddy, A. R., Babu, K., Sujatha, C., Reddy, K. V., Structural and photoluminescence properties of Mg substituted ZnO Nanoparticles, Optical Materials, 36, 879–884, (2014).

Elilarassi, R., Chandrasekaran, G., Microstructural and photoluminescence properties of Co-doped ZnO films fabricated using a simple solution growth method, Materials Science in Semiconductor Processing, 14, 179–183, (2011).


  • Şu halde refbacks yoktur.

Telif Hakkı (c) 2020 Ozlem Bilgili

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.