On tzitzeica surfaces in euclidean 3-space E^3

Bengü Bayram, Emrah Tunç


In this study, we consider Tzitzeica surfaces (Tz-surface) in Euclidean 3-Space E^3. We have been obtained Tzitzeica surfaces conditions of some surfaces. Finally, examples are given for these surfaces.

Anahtar Kelimeler

Tzitzeica condition, Tzitzeica surface; fundamental form; Gauss curvature

Tam Metin:



Bobe, A., Boskoff, W.G. and Ciuca, M.G., Tzitzeica type centro-affine invariants in Minkowski space, Analele Stiintifice ale Universitatii Ovidius Constanta, 20(2), 27-34, (2012).

Crasmareanu, M., Cylindrical Tzitzeica curves implies forced harmonic oscillators, Balkan Journal of Geometry and Its Applications, 7(1), 37-42, (2002).

Vilcu, G.E., A geometric perspective on the generalized Cobb-Douglas production function, Applied Mathematics Letters, 24, 777-783, (2011).

Constantinescu, O., Crasmareanu, M., A new Tzitzeica hypersurface and cubic Finslerian metrics of Berwall type, Balkan Journal of Geometry and Its Applications, 16(2), 27-34, (2011).

O’neill, B., Elemantary Differential Geometry, (1966).

Sipus, Z.M., Divjak, B., Translation surface in the Galilean space, Glasnik Matematicki. Serija III, 46(2), 455–469, (2011).

Bekkar, M., Senoussi, B., Factorable surfaces in the 3-Dimensional Lorentz-Minkowski space satisfying ∆II ri=λiri, International Journal of Geometry, 103, 17-29, (2012).

Meng, H., and Liu, H., Factorable surfaces in Minkowski 3-space, Bulletin of the Korean Mathematical Society, 155-169, (2009).

Turhan, E., Altay, G., Maximal and minimal surfaces of factorable surfaces in Heis3, International Journal of Open Problems in Computer Science and Mathematics, 3(2), (2010).

Yu, Y., and Liu, H., The factorable minimal surfaces, Proceedings of the Eleventh International Workshop on Differential Geometry, 33-39, Kyungpook Nat. Univ., Taegu, (2007).

Jaklic, A., Leonardis, A., Solina, F., Segmentation and recovery of superquadrics, Kluver Academic Publishers, 20, (2000).

Bulca, B., Arslan, K., (Kılıc) Bayram, B., Ozturk, G. and Ugail, H., On spherical product surfaces in E3, IEEE Computer Society, Int. Conference on Cyberworlds, (2009).


  • Şu halde refbacks yoktur.

Telif Hakkı (c) 2020 Bengü Bayram, Emrah Tunç

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.