Bağlaştırım yöntemi ve çift Sinh-Gordon potansiyelinin süpersimetrik eşleri

Bengü Demircioğlu, Şengül Kuru

Öz


Süpersimetrik kuantum mekaniği yöntemlerinden biri olan bağlaştırım yöntemi kısmi olarak çözülebilen çift Sinh-Gordon potansiyeline uygulandı. Bu potansiyelin süpersimetrik eşleri ile bunların özdeğer ve özfonksiyonları bağlaştırım yöntemi kullanılarak bazı belirli parametre değerleri için bulundu. Böylece, yeni kısmi olarak çözülebilen potansiyeller elde edildi.


Tam Metin:

PDF

Referanslar


.Infeld, L. and Hull, T. E., “The Factorization Method.” Rev. Mod. Phys., 23: 21-68, (1951).

.Andrianov, A.A., Borisov, N.V. and Ioffe, M.V., “Factorization method and Darboux transformation for multidimensional Hamiltonians” Theor. Math. Phys., 61: 1078-1088, (1984).

.Matveev V. B. and Salle M. A., “Darboux Transformations and Solitons” Berlin.

Springer, (1991).

.Cooper F., Khare A and Sukhatme U. P., “Supersymmetry in Quantum Mechanics”, London. World Scientific, (2001).

.Kuru Ş., Teğmen A. and Verçin A., “Intertwined isospectral potentials in an arbitrary dimension” J. Math. Phys., 42: 3344-3360, (2001).

.Demircioğlu B., Kuru Ş., Önder M. and Verçin A., “Two families of superintegrable and isospectral potentials in two dimensions” J. Math. Phys., 43: 2133-2150, (2002).

.Razavy M., “An exactly soluble Schrödinger equation with a bistable potential”

Am. J. Phys., 48: 285-288, (1980).

.Gangopadhyaya A., Khare A. and Sukhatme U. P., “Methods for generating quasi-exactly solvable potentials” Phys. Lett. A, 208: 261-268, (1995).

.Tkachuk V. M., “Quasi-exactly solvable potentials with two known eigenstates” Phys.

Lett. A, 245: 177-182, (1998).

. Kuliy T. V. and Tkachuk V. M., “Quasi-exactly solvable potentials with three known eigenstates ” J. Phys. A: Math.Gen., 32: 2157-2169, (1999).

. N. Debergh and B. Van den Bossche, J. Ndimubandi, “A general approach of quasi- exactly solvable Schrödinger equations with three known eigenstates” Int. J. Mod. Phys. A, 18: 5421-5432, (2003).

. Khare A., “A QES band-structure problem in one dimension” Phys. Lett. A, 288: 69- 72, (2001).

. Ulyanov V. V. and Zaslavskii O. B., “New methods in the theory of quantum spin systems” Pyhs. Rep., 216: 179-251, (1992).

. Anderson A. and Camproesi R., “Intertwining operators for solving differential equations, with applications to symmetric spaces” Commun. Math. Phys. 130, 61-82, (1990).

. Canata F., Ioffe M. V., Junker G. and Nishnianidze J., “Intertwining relations of non- stationary Schrödinger operators” J. Phys. A, 32: 3583-3598, (1999).

. Junker G., “Supersymmetric Methods in Quantum and Statistical Physics”, Berlin.

Springer: (1996).

. Bender C. M. and Dunne G. V., “Quasi-exactly solvable systems and orthogonal polynomials” J. Math. Phys., 37: 6-11 (1996). (hep-th/951138v1)

. Khare A. and Mandal B.P., “Anti-isospectral transformations, orthogonal polynomials and quasi-exactly solvable problems” J. Math. Phys., 39: 3476-3486, (1998). (quant- ph/9711001)

. Bilge Ocak S. and Altanhan T., “The effective potential of squeezed spin states” Phys.

Lett. A, 308: 17-22, (2003).

. Demircioğlu B., Bilge Ocak S. and Kuru Ş., “Supersymmetric analysis of a spin Hamiltonian model” Phys. Lett. A, 353: 34-39, (2006).


Refback'ler

  • Şu halde refbacks yoktur.


Telif Hakkı (c) 2016 Bengü Demircioğlu, Şengül Kuru

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.