Minimal But Inefficient Presentations Of The Semi-Direct Product Of Finite Cyclic Groups

Fırat Ateş, Sinan Çevik

Öz


Let G be a semi-direct product of B by A where B and A are both cyclic groups of order n (n Î N) and p (any prime), respectively. As a main result of this paper, we prove that G has an inefficient but minimal presentation. Then, as an application of this result, we show that a metacyclic group satisfy the main result.


Tam Metin:

PDF

Referanslar


Y.G. Baik, J. Howie and S.J. Pride, “The identity problem for graph products of groups”, J. Algebra, 162 (1993), 168-177.

Y.G. Baik and S.J. Pride, “On the efficiency of Coxeter groups”, Bull. London Math. Soc. 29 (1997), 32-36.

Y.G. Baik and S.J. Pride, “Generators of second homotopy module of presentations arising from group constructions”, preprint, University of Glasgow, 1993.

F.R. Beyl and J. Tappe, “Group extensions, representations and the Schur multiplicator”, Lecture Notes in Mathematics , Springer-Verlag 1982.

F.R. Beyl, “The Schur-multiplicator of metacyclic groups”, Proc. Amer. Math. Soc. 40 (1973), 413-418.

W.A. Bogley and S.J. Pride, “Calculating generators of 2, in Two dimensional homotopy and combinatorial group theory” (C. Hog-Angeloni, W. Metzler, A. Sieradski, editors), CUP (1993), 157-188.

R.Brown and J.Huesbschmann, “Identities among relations, in Low dimensional topology” (R.Brown and T.L.Thickstun, editors), LMS Lecture Notes Series 48 (1982), 153-202.

A.S. Çevik, “The efficiency of the standard wreath, product”, Proc. of the Edinburgh

Math. Soc. 43 (2000), 415-423.

A.S. Çevik, “The p-Cockcroft property of central extensions of groups”, Comm. in Algebra, 29 (3) (2001), 1085-1094.

A.S. Çevik, “The efficiency of 2-generators of semi-direct product of groups”, Commun. Fac. Sci. Univ. Ank. Series A1, 48 (1999), 7-13.

M.N. Dyer, “Cockcroft 2-Complexes”, preprint, University of Oregon, 1992.

N.D. Gilbert and J. Howie, “Cockcroft Properties of Graphs of 2-Complexes”, Proc. Royal Soc. Of Edinburgh Section A-Mathematics 124 (1994), 363-369.

D.B.A. Epstein, “Finite presentations of groups and 3-manifolds”, Quart. J. Math.

Oxford Ser(2), 12 (1961), 205-212.

J. Harlander, “Minimal cockcroft subgroups”, “Glasgow Journal of Math. 36 (1994), 87-90.

D.L. Jonhson, “Presentation of Groups”, LMS Lecture Notes Series 22, Cambridge University Pres, 1976.

C.W. Kilgour S.J. Pride, “Cockcroft Presentations”, Journal of Pure and Applied Algebra 106 (3) (1996), 275-295.

L.G. Kovacs, “Finite groups with trivial multiplicator and large deficiency”, Proceedings Groups-Korea 1994 (A.C. Kim and D.L. Jonhson (eds)), Walter de Gruyter, 1995, 277-284.

L.G. Lustig, “Fox ideals, N-torsion and applications to groups and 3-monifols, in Two-dimensional homotopy and combinatorial group theory” (C.Hog-Angeloni, W. Metzler and A.J. Sieradski, editors), CUP, 1993, 219-250.

W. Magnus, A. Karrass, D. Solitar, “Combinatorial Group Theory”, Dover Publ.1966.

B.H. Neumann, “Some groups with trivial multiplicators”, Publ. Math. Debrecen 4 (1995), 190-194.

S.J. Pride, “Identities Among Relations of Group Presentations, Group Theory From A Geometrical Viewpoint, Tiresto 1990”, (E. Ghys, A. Haefliger, A.Verjovsky, editors) World Scientific Publishing, 1991, 687-717.

E.F. Robertson, R.M. Thomas and C.I. Wotherpoon, “A class of inefficient groups with symmetric presentations, Proceedings Groups-Korea 1994 (A.C. Kim and D.L. Johnson (eds)), Walter de Gruyter, 1995.

J.J. Rotman, “Theory of Groups”, Wm. C. Brown Publishers, Third edition, 1988, Iowa.

G. Smith and O.Tabachnikova, “Topics in group theory”, Springer-Verlag, 2002. [25] R.G. Swan, “Minimal resolutions for finite groups”, Topology 4 (1965), 193-208 [26] J.W. Wamsley, “The deficiency of metacyclic groups”, Proc. Amer. Math.Soc.24 (1970), 724-726.

J.W. Wamsley, “Minimal presentations for finite groups”, Bull. London Math. Soc.5 (1973), 129-144.

J.Wiegold, “The Schur multiplier: an elemantary approach”, Groups-St Andrews 1981 (ed.by C.M. Campbell and E.F. Robertson), LMS Lecture Note Series 71, 137- 154.


Refback'ler

  • Şu halde refbacks yoktur.


Telif Hakkı (c) 2016 Fırat Ateş, Sinan Çevik

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.