Kara mayınlarının tespiti için askeri eğitim simülasyonu tasarımı: Bir araştırma ve ön çalışma

Merve Varol Arısoy, Ecir Uğur Küçüksille, Ayhan Arısoy

Öz


Mayınların çeşitli donanımsal yapılara sahip olması ve farklı tiplerdeki üretiminin sürekli artması nedeniyle hem mayının saha içerisinde tespiti hem de farklı özellikteki bu mayınların temin edilerek askeri eğitimin verilmesi zorlaşmıştır. Bunun neticesinde, verilen mayın tarama eğitimleri teori düzeyinde kalmıştır.

 

Bu çalışmada mayın tarama eğitimini daha çok uygulamaya dönük bir hale getirebilmek için bir simülasyon geliştirilecektir. Simülasyonda kullanıcının istediği mayın tipini, araziyi ve toprak koşulunu seçebileceği bir ortam yaratılacaktır. Aynı zamanda simülasyondaki sanal asker ile dışarıdaki gerçek askerin eş zamanlı olarak koordineli bir biçimde çalışması sağlanacaktır. Bunun için gerçek askerin kullanacağı aygıt ile yönlendirme yapılacaktır. Bu çalışma ile askerlerin birçok mayın tipini tanıyabildiği yeterli bir pratik eğitim almaları amaçlanmaktadır. Bahsedilen simülasyon uygulamasını geliştirebilmek için, dünyada kullanılan mayın tarama cihaz ve yöntemleri hakkında bilgi verilmiştir. Ayrıca, gerçekleştirilecek mayın tarama eğitim simülatörü yazılımının kapsamı anlatılarak, hedeflenen çıktılar ortaya konmuştur.


Tam Metin:

PDF

Referanslar


http://www.canlaser.com/tr/Mines.aspx, (12.05.2010).

http://en.wikipedia.org/wiki/Demining#Military_mine_clearance, (05.01.2017).

http://www.mineaction.org/issues/clearance, (10.07.2016).

http://en.wikipedia.org/wiki/Carpet_bombing, (06.01.2017).

http://en.wikipedia.org/wiki/Bangalore_torpedo, (13.12.2016).

http://en.wikipedia.org/wiki/Mine-clearing_line_charge, (16.01.2017).

http://www.dsta.gov.sg/docs/publications-documents/introduction-to-mine-clearing technology.pdf?sfvrsn=0, (16.08.2016).

http://en.wikipedia.org/wiki/Demining#Current_humanitarian_demining_methods, (05.01.2017).

ELADIN, High Pressure Waterjet Laboratory, Rock Mechanics and Explosive Research Center, University of Missouri - Rolla (online). http://eladin.umr.edu/, (13.02.2007).

Haight, B., Cleaning up an explosive problem: project Eladin uses water to detect, expose and neutralize abandoned land mines, Diesel Progress North American Edition, 12, (2002).

Larionava, S, Automated Landmine Detection by means of a Mobile Robot, PhD Thesis, Faculty of Science and Technology University of Coimbra, Portekiz, (2007).

Ishikawa , J., Kiyota, M. ve Furuta, K., Evaluation of test results of gpr-based antipersonnel landmine detection systems mounted on robotic vehicles, Proceedings of the IARP Int. Work-shop on Robotics and Mechanical Assistance in Humanitarian Demining, 39-44, (2005).

Hirose, S., Yokota, S., Torii, A. ve Ogata, S., Quadruped Walking Robot Centered Demining System - Development of TITAN-IX and its Operation, In IEEE Int. Conf. on Robotics and Automation(ICRA), 1296-1302, (2005).

Acar, E. U., Zhang, Y. P., Choset, H., Schervish, M., Costa, A. G., Melamud, R., Lean, D. C. ve Graveline, A., Path planning for robotic demining and development of a test platform, In Int. Conf. on Field and Service Robotics, 161-168, (2001).

Gonzalez, E., Alarcon, M., Parra, C. ve Zheng, Y. F., BSA: A coverage algorithm, In IEEE Int. Conf on Intelligent Robots and Systems (IROS), volume 2, 1679-1684,(2003).

Acar, E. U., Choset, H., Zhang, Y. P. ve Schervish, M., Path planning for robotic demining: Robust sensor-based coverage of unstructured environments and probabilistic methods, The International Jounal of Robotics Research, 441-466, (2003).

Zhang, Y. P., Schervish, M., Acar, E. U. ve Choset, H., Probabilistic methods for robotic landmine search, In IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 1525-1532, (2001).

Rachkov, M. YU., Marques, L. ve de. Almeida, A. T., Multisensor demining robot, Autonomous Robots, 18(3), 275-291, (2005).

Clark, G. A., Sengupta, S. K., Aimonetti, D., Roeske, F. ve Donetti, J. G., Multispectralimage feature selection for land mine detection, IEEE Trans. on Geoscience and Remote Sensing, 38(1), 304-311, (2000).

Kempen, L., Katartzis, A., Pizurica, V., Cornelis, J. ve Sahli, H., Digital signal/image processing for mine detection. part1: Airborne approach, In Euroconference on Sensor Systems and Signal Processing Techniques Applied to the Detection of Mines and Unexploded Ordance, 48-53, (1999).

Gonzalez, E. ve Gerlein, E., BSA-CM: A Multi-Robot Coverage Algorithm, Proceeding WI-IAT '09 Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, volume 02, 383-386, (2009).

Messelink, W., Schutte, K., Vossepoel, A., Cremer, F., Schavemaker, J. ve Breejen, E., Feature-based detection of landmines in infrared images, In Proc. of SPIE, Detection and Remediation Technologies for Mines and Minelike Targets VII, volume 4742, 108-119, (2002).

Cremer, F., Jong, W., Schutte, K., Yarovoy, A. G. ve Kovalenko, V., Feature level fusion of polarimetric infrared and gpr data for landmine detection, In Int. Conf. on Requirements and Technologies for the Detection, Removal and Neutralization of Landmines and UXO, 638-642, (2003).

Frigui, H., Gader, P. D., Keller, J. M. ve Schutte, K., Fuzzy clustering for land mine detection, In Conf. of the North American Fuzzy Information Processing Society - NAFIPS, 261-265, (1998).

Roughan, M., McMichael, D. W., Ho, K. C., Yarovoy, A. G. ve Kovalenko, V., A comparison of methods of data fusion for land-mine detection, In Int. Workshop on Image Analysis and Information Fusion, (1997).

Jarrad, G. A. ve McMichael, D. W., Improving multispectral mine detection methods by compensating for clutter, In Australian-American Joint Mine Warfare Conference, 1-4, (1999).

Caygill, J.S., Davis, F. ve Higson, S.P.J., Current trends in explosive detection techniques, Talanta, volume 88, 14-29, (2012).

Cardona, L., Jıménez, J. ve Vanegas, N., Landmıne Detectıon Technologıes To Face The Demınıng Problem In Antıoquıa, DYNA, 81(183), 115-125, (2014).

Chen, X., Guo, D., Choa, F.S., Wang, C.C. ve Trivedi, S., Standoff photoacoustic detection of explosives using quantum cascade laser and an ultrasensitive microphone, Applied Optics, 52, 26-32, (2013).

Piorek, B.D., Lee, S.J., Moskovits, M. ve Meinhart, C.D., Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives, Analytical Chemistry, 884, 9700-9705, (2012).

Rains, G.C., Tomberlin, J.K. ve Kulasiri, D., Using insect sniffing devices for detection, Trends in Biotechnology, 26, 288-294, (2008).

Deyholos, M., Faust, A.A., Minmin, M., Montoya, R. ve Donahue, D.A., Feasibility of landmine detection using transgenic plants, Proceedings of SPIE, 6217, 62172B-1-62172B-12, (2006).

Kasban, H., Zahran, O., Elaraby, S.M. ve El-Kordy, M., A comparative study of landmine detection techniques, Sensing and Imaging: an International Journal, 11, 89-112, (2010).

Chi, W., Ying-Jie, Y. ve Xing-Fei, L., An acoustic-to-seismic coupling based landmines detection system in lab-scale experimental environment, Journal of Tianjin University, 160-166, (2011).

Öztürk, H., Nazli, H., Yegin, K., Biçak, E. ve Sezgin, M., Millimeter-wave detection of landmines, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII, 870913-1-870913-6, (2013).

Thanh, N.T., Hao, D.N. ve Sahli, H., Thermal infrared technique for landmine detection : Mathematical formulation and methods, Acta Mathematica Vietnamica, 36, 469-504, (2011).

Gottfried, J.L., Harmon, R.S. ve Lapointe, A., Progress in LIBS for land mine detection, Detection and Sensing of Mines, Explosive Objects and Obscured Targets XIV, 73031F-1-73031F-24, (2009).

Hauck, J.P., Walker, M., Hamadani, S., Bloomhardt, N. ve Eagan, J., Laser-induced breakdown spectroscopy based deminers' probe, Detection and Sensing of Mines, Explosive Objects and Obscured Targets XIV, 73031G-1-73031G-9, (2009).

Zhang, X., Jiang, Y. ve Zhao, Y., Targets detection and discrimination using laser polarimetric imaging, Frontiers of Optoelectronics in China, 2, 419-424, (2009).

Bruschini, C. ve Gros, B., A Survey of research on sensor technology for landmine detection, Journal of Humanitarian Demining, Issue 2.1. http://maic.jmu.edu/Journal/2.1/bruschini.htm, (1998).

Coronado-Vergara, J., Avina-Cervantes, G., Devy, M. ve Parra, C., Towards landmine detection using artificial vision, In IEEE Int. Conf. on Intelligent Robots and Systems, 659-664, (2005).

Macdonald, J., Lockwood, J.R., Mcfee, J., Altshuler, T. ve Broach, T., Alternatives for landmine detection, CA: RAND, Santa Monica, ABD, (2003).

King, C., Blagden, P., Rhodes, G., Maresca, L. ve Wheatley, A., Mine action : lessons and challenges, Geneva International Centre for Humanitarian Demining, Geneva, İsviçre, (2005).

Robledo, L., Carrasco, M. ve Mery, D., A survey of land mine detection technology, International Journal of Remote Sensing, 30, 2399-2410, (2009).

Habib, M.K. (2007), Humanitarian demining : reality and the challenge of technology, The state of the arts. Advanced Robotic Systems, 4, 151-172.

Habib, M.K., Humanitarian demining mine detection and sensors, IEEE International Symposium on Industrial Electronics (ISIE), 2237-2242, (2011).

Kolba, M.P., Torrione, P.A. ve Collins, L.M., Fusion of ground-penetrating radar and electromagnetic induction sensors for landmine detection and discrimination, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV, 76641S-1-76641S-7, (2010).

Hibbs, A. D., Alternatives for Landmine Detection, Chapter Nuclear Quadrupole Resonance, Rand, Skokie, 169-189, (1999).

C. Sheehy., Fast neutron technology used for explosive detection, National Defense, (6), (2003).

Bruschini, C., Commercial systems for the direct detection of explosive ordnance disposal tasks, Subsurface Sensing Technologies and Applications, 2(3), 299-336, (2001).

Wu, C., Digging in the dirt: chemical and biological sensors could aid the search for hidden land mines, Science News, 153(13), 202-204, (1998).

Neves, M. A., Gomes, R. R. ve Costa, R. M., Rob^o com pernas para desminagem humanit_aria, University of Coimbra, Portekiz, (2003).

Ma, J. ve Bock, W. J., Fiber-Optic Sensors for Explosives Detection, The Open Optics Journal, 7, 141-158, (2013).

Bakaltcheva, IB., Ligler, FS., Patterson, CH. ve Shriver-Lake, LC., Multianalyte explosive detection using a fiber optic biosensor, Anal Chim Acta 1999, 399(1-2), 13-20, (1999).

Van Emon, J.M. ve Lopez-Avila, V., Immunochemical Methods for Environmental Analysis, Anal. Chem. 64(2), 78A-88A, (1992).

Mcfee, J.E., Faust, A.A., Andrews, H.R., Clifford, E.T.H. ve Mosquera, C.M., Performance of an improved thermal neutron activation detector for buried bulk explosives, Nuclear Instruments and Methods in Physics Research A, 712, 93-101, (2013).

Sudac, D., Majetic, S., Kollar, R., Nad, K. ve Obhodas, J., Inspecting minefields and residual explosives by fast neutron activation method, IEEE Transactions on Nuclear Science, 59, 1421-1425, (2012).

Bielecki, Z., Janucki, J., Kawalec, A., Mikolajczyk, J. ve Palka, N., Sensors and systems for the detection of explosive devices - an overview, Metrology and Measurement Systems, XIX, 3-28, (2012).

Mikhaltsevitch, V.T., Techniques used for 14N NQR studies, Annual Reports on NMR Spectroscopy, 66, 149-194, (2009).

Stitzel, S.E., Aernecke, M.J. ve Walt, D.R., Artificial noses, Annual Review of Biomedical Engineering,13, 1-25, (2011).

Kong, D., Qi, Y., Zhou, L., Lin, B. ve Li, Z., MEMS based sensors for explosive detection: development and discussion, Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 265-269, (2008).

Heuvel, J. ve Fiore, F., Simulation study of x-ray backscatter imaging of pressure-plate improvised explosive devices, In: Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVII, 835716-1-835716-15, (2012).

Church, P., Mcfee, J.E., Gagnon, S. ve Wort, P., Electrical impedance tomographic imaging of buried landmines, IEEE Transactions on Geoscience and Remote Sensing, 44, 2407-2420, (2006).

Ishikawa, J. ve Iino, A., A study on prodding detection of antipersonnel landmine using active sensing prodder, International Symposium on Humanitarian Demining, 15-23, (2010).

Achkar, R., Owayjan, M. ve Mrad, C., Landmine Detection and Classification Using MLP, 2011 Third International Conference on Computational Intelligence, Modelling & Simulation, 1-6, (2011).


Refback'ler

  • Şu halde refbacks yoktur.


Telif Hakkı (c) 2017 Merve Varol Arısoy, Ecir Uğur KÜÇÜKSİLLE, Ecir Uğur KÜÇÜKSİLLE, Ayhan ARISOY, Ayhan ARISOY

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.