Makine öğrenmesi algoritmaları ve dalgacık dönüşümü ile EKG sinyalinden özellik çıkarımı

Hülya Kodal Sevindir, Süleyman Çetinkaya, Cüneyt Yazıcı

Öz


Günümüzde biyomedikal sinyallerin analizinde dalgacık dönüşümünün kullanılması oldukça yaygın olup elde edilen sonuçlar etkileyicidir. Bu çalışmada, biyomedikal sinyallerden elektrokardiyogram (EKG) sinyallerinde QRS zirvesi belirleme hedeflenmiş ve daha iyi sonuçlar almak için öncelikle EKG sinyallerindeki zemin gezinme gürültüsünün giderilmesi ve yüksek frekanslı gürültünün temizlenmesi amacıyla dalgacık analizi kullanılmıştır. Daubechies 10 (db10) dalgacık dönüşümü uygulanan sinyalin 10. seviye yaklaşım katsayısı ve 10. seviye detay katsayısı çıkartılarak sinyaldeki zemin gezinmesi problemi giderilmistir. Yüksek frekans gürültüsünün giderilmesi için ise zemin gezinmesi problemi giderilmiş olan sinyale dalgacık gürültü temizleme uygulanmıştır. Gürültüsü temizlenen sinyalde QRS zirvelerini belirlemek için sinyalin 1. türev ve 2. türev bilgileri ele alınarak Destek Vektör Makineleri ve Naive Bayes algoritmaları kullanılmıştır. QRS zirvelerinin bulunmasında, MIT-BIH aritmi veri tabanında verilen QRS zirvelerinin konum bilgileri kullanılmıştır. QRS zirvelerini doğru belirlemede Destek Vektör Makineleri algoritması Naive Bayes algoritmasından daha yavaş sonuç vermesine rağmen %99.46 duyarlılık, %100 seçicilik ve %0.54 hata değerlerine ulaşmıştır.

Tam Metin:

PDF

Referanslar


https://www.medikalakademi.com.tr/kalp-hastaliklari-neden-genclerde-daha-olumcul/, (20.06.2017).

Kodal Sevindir, H., Cetinkaya, S. ve Sayli, O., Wavelet transform based noise removal from ECG signal for accurate heart rate detection using ECG, Medical Technologies National Conference (TIPTEKNO), Muğla, (2015)

Yanık, H. ve Değirmenci, E., Detection of ECG characteristic points using multiresolution analysis, Sinyal işleme ve iletişim uygulamaları (SİU), Malatya, 383-386, (2015).

Jiang, X. ve Zhang, L., ECG arrhythmias recognition system based on independent component analysis feature extraction, IEEE Region 10 Conference, Hong Kong, (2006).

http://tinaztepehastanesi.com.tr/saglik_kosesi/kardiyoloji/ekg-nedir, (18 Mart 2015).

http://www.slideshare.net/husam685/ekg-ritim-ve-pace-maker, (25 Kasım 2016)

Uslu, E. ve Bilgin, G., Dalgacık ve birleşik dalgacık paket dönüşümü kullanarak kalp aritmilerinin sınıflandırılması, IEEE 16. Sinyal İşleme ve Uygulamaları Kurultayı, Antalya, (2008).

Smith, M.J., ve Barnwell, T.P., A procedure for designing exact reconstruction filter banks for tree structured sub-band coders, In Proc. IEEE Int.Conf. Acoust., Speech, and Signal Proc., San Diego, (1984).

Turan, M.D., EKG Sinyalindeki gürültülerin IIR filtreler ile matlabda filtrelenmesi, Bitirme Ödevi, Süleyman Demirel Üniversitesi, (2005).

Vapnik, V., Statistical learning theory, Wiley Press, New York, (1998).

Domingos, P. ve Pazzani, M., On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning, 29, 103–130, (1997).

Goldberger, A.L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C, Mark, R. G., Mietus, J.E., Moody, G. B., Peng, C. K. ve Stanley, H. E., PhysioBank, PhysioToolkit, PhysioNet, components of a new research resource for complex physiologic signals, Circulation, 101, 23, 215–220, (2000).

Sahambi, J.S., Tandon S.N. ve Bhatt, R. K. P., Using wavelet transforms for ECG characterization, IEEE Engineering in Medicine and Biology, 97, 77–83, (1997).

Mehta, S.S. ve Lingayat, N.S., SVM-based algorithm for recognition of QRS complexes in electrocardiogram, Elsevier Masson IRBM, 29, 310–317, (2008).

Sasikala, P. ve Wahidabanu, R.S.D., Robust QRS Peak and QRS detection in Electrocardiogram using Wavelet Transform, International Journal of Advanced Computer Science and Applications, 1, 6, 48–53, (2010).

Dinh, H.A.N., Kumar, D.K., Pah, N.D. ve Burton, P., Wavelets for QRS Detection, Proceedings of the 23rd Annual EMBS International Conference, 1, 1883–1887, İstanbul, (2001).

Xia, Y., Han, J. ve Wang, K., Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering, Bio-Medical Materials and Engineering, 26, 1059–1065, (2015).

Gritzali, F., Towards a Generalized Scheme For QRS Detection in ECG Waveforms, Signal Processing, 15, 183–192, (1988).

Mehta, S.S., Shete, D.A., Lingayat, N.S. ve Chouhan, V.S., K-means algorithm for the detection and delineation of QRS-complexes in electrocardiogram, Elsevier Masson IRBM, 31, 48–54, (2010).

Chouhan, V.S. ve Mehta, S.S., Detection of QRS complex in 12-lead ECG using adaptive quantized threshold, International Journal of Computer Science and Network Security, 8, 155–163, (2008).

Mehta, S.S. ve Lingayat, N.S., Combined entropy based method for detection of QRS complexes in 12-lead electrocardiogram using SVM, Computers in Biology and Medicine, 38, 138–145, (2008).

Gayake, M.A. ve Shete, V.V., ECG QRS-Complex Detection using SVM, ITSI Transactions on Electrical and Electronics Engineering, 2, 5-8, (2014).

Singh, D. ve Khosla, A., QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases, Journal of Advanced Research, 4, 331–344, (2013).


Refback'ler

  • Şu halde refbacks yoktur.


Telif Hakkı (c) 2018 Hülya KODAL SEVİNDİR, Süleyman ÇETİNKAYA, Cüneyt YAZICI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.