Biosorption of Zn(II) Ions by Low-Cost Adsorbents which Containing Tannins and Thermal Properties of Adsorbents

Ahmet Lütfü Uğur, Ali Erdoğmuş, Mahmure Ü. Özgür

Öz


A new low-cost, locally available sorbent sumac (Rhus coriaria L.) leaves (SL) and resins prepared from tannic acid/ gelatin (TG) and tannin from sumac leaves/ gelatin (STG) were tested for its ability to remove Zn(II) ions from aqueous solutions. The biosorption studies carried out with single metal solutions. The removal of Zn(II) from aqueous solution increased with pH and sharply decreased when pH of solution was decreased. Batch isotherm of biosorption zinc ions was investigated. The Freundlich, Langmuir and Tempkin models can describe the adsorption equilibrium of Zn(II) on SL, TG resin and STG resin. The biosorption constants were found from the Freundlich, Langmuir and Tempkin isotherms at room temperature. It is found that the biosorption data of zinc on SL, TG resin and STG resin fitted the Freundlich, Langmuir and Tempkin adsorption models. This study investigated also thermal analysis of TG and STG resins. The TGA-DTG curves of all the resins were similar and showed three steps in a similar way to a phenolic resin. This means that each resin is well cross-linked.


Tam Metin:

PDF

Referanslar


Liao, X., Lu, Z., Zhang, M., Liu, X., Shi, B., Adsorption of Cu (II) from aqueous solutions by tannins immobilized on collagen, Journal of Chemical Technology and Biotechnology 79 (2004) 335- 342

Ucun, H., Aksakal, O., Yildiz, E., Copper (II) and zinc (II) biosorption on Pinus sylvestris L. Journal of Hazardous Materials 161 (2- 3) (2009) 1040- 1045

Nguyen, C., Do, D.D., The dubinin- radushkevich equation and the underlying microscopic adsorption description, Carbon 39 (2001) 1327- 36

Ho, Y.S., McKay, G., The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Research 34 (2000) 735- 42

Poots, V.J.P., McKay, G., Healy, J.J., Removal of basic dye from effluent using wood as an adsorbent, Journal of the Water Pollution Control Federation 50 (1978) 926- 35

Al-Asheh, S., Duvnjak, Z., Sorption of cadmium and other heavy metals by pine bark, Journal of Hazardous Materials 56(1997) 35- 51

Low, K.S., Lee, C.K., Leo, A.C., Removal of metals from electroplating wastes using banana pith, Bioresource Technology 51 (1995) 227- 31

Mishra, S.P., Tiwari, D., Dubey, R.S., The uptake behaviour of rice (Jaya) husk in the removal of Zn (II) ions: A radiotracer study. Applied Radiation and Isotopes 48 (1997) 877- 82

Yu, B., Zhang, Y., Shukla, A., Shukla, S.S., Dorris, K.L., The removal of heavy metals from aqueous solutions by sawdust adsorption: Removal of lead and comparison of its adsorption with copper, Journal of Hazardous Materials 84 (2001) 83- 94

Balköse, D., Baltacıoğlu, H., Adsorption of heavy metal cations from aqueous solutions by wool fibers, Journal of Chemical Technology and Biotechnology 54 (1992) 393- 7

Sawalha, M.F., Peralta-Videa, J.R., Romero-Gonzalez, J., Duarte-Gardea, M., Gardea-Torresday, J.L., Thermodynamic and isotherm studies of the biosorption of Cu (II), Pb(II), and Zn (II) by leaves of saltbush (A triplex canescens) The Journal of Chemical Thermodynamics 39 (2007) 488- 492

Kosar, M., Bozan, B., Temelli, F., Baser, K.H.C., Antioxidant activity and phenolic composition of sumac (Rhus coriaria L.) extracts, Food Chemistry 103 (2007) 952-959

Baytop, T., Therapy with medicinal plants in Turkey (past and present) (1st ed). Istanbul, Turkey: Publication of the Istanbul University, No.3255 (1984) (In Turkish).

Dogan, M., Alma, M.H., Ilcim, A., Characteristics and fatty acid compositions of Rhus coriaria cultivars from Southeast Turkey. Chemistry of Natural Compounds, 41 (2005) 724-725

Gulmez, M., Oral, N., Vatansever, L., The effect of water extract of sumac (Rhus coriaria L.) and lactic acid on decontamination and shelf life of raw broiler wings, Poultry Science 85 (2006) 1466-1471.

Uhl, S.R., Handbook of spices, seasonings and flavorings. Lancaster, PN USA: Technomic Publishing Company, Inc. (2000).

Zalacain, A., Prodanov, M., Carmona, M., Alonso, G.L., Optimisation of extraction and identification of gallotannins from sumac leaves, Biosystems Engineering 84(2) (2003) 211- 6

Özacar, M., Soykan, C., Şengil, İ.A., Studies on synthesis, characterization, and metal adsorption of mimosa and valonia tanin resins, Journal of Applied Polymer Science 102 (2006) 786- 797

Fakirov, S., Bhattacharyya, D., Handbook of Engineering Biopolymers. Homopolymers, Blends and Composites. Carl Hanser Verlag, Munich (2007).

Bigi, A., Cojazzi, G., Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking Biomaterials Science 22 (8) (2001) 763- 768

Zhou, Y., Yu, C., Shan, Y., Adsorption of flouride from aqueous solution on La3+ -impregnated cross-linked gelatin Separation and Purification Technology 36 (2004) 89- 94

Norton, L., Baskaran, K., McKenzie, T., Biosorption of zinc from aqueous solutions using biosolids, Advances in Environmental Research 8(2004) 629-635

Kim, H.J., Eom, Y.G., Thermogravimetric analysis of rice husk flour for a new material of lignecellulosic fiber-thermoplastic polymer composites Mokchae Konghak 29(3) (2001) 59-67

Zalacain, A., Alonso, G.L., Prodanov, M., Carmona, M., Determination of the tanning capacity of a rhus coriaria L. extract and its antioxidant activity Journal of the Society of Leather Technologies and Chemists 84 (2001) 212- 215

Nakano, Y., Tanaka, M., Nakamura, Y., Konno, M., Removal and recovery system of hexavalent chromium from waste water by tannin gel particles Journal of Chemical Engineering of Japan, 33(5) (2000) 747- 752

Zalacain, A., Carmona, M., Lorenzo, C., Blazquez, I., Alonso, G.L., Antiradical efficiency of different vegetable tannin extracts, Journal of the American Leather Chemists Association 97 (2002) 137- 142

Li, W., Wu, G., Chen, H., Wang, M., Preparation and characterization of gelatin/ SDS/ NaCMC microcapsules with compact wall structure by complex coacervation Colloids and Surfaces A: Physicochemical and Engineering Aspects 333 (1- 3) (2009) 133- 137

Garro-Galvez, J.M., Fechtal, M., Riedl, B., Gallic acid as a model of tannins in condensation with formaldehyde Thermochim Acta 274 (1996) 149- 163

Kapoor, A., Viraraghavan, T., Cullimore, D.R., Removal of heavy metals using the fungus Aspergillus niger, Bioresource Technology 70 (1) (1999) 95-104

Sag, Y., Kaya, A., Kutsal, T., The simultaneous biosorption of Cu(II)/ and Zn on Rhizopusarrhizus: application of the adsorption models Hydrometallurgy 50 (1998) 297- 314

Weng, C.H., Tsai, C.Z., Chu, S.H., Sharma, Y.C., Adsorption characteristic of copper (II) onto spent activated clay Separation and Purification Technology 54 (2007) 187- 197

Hawari, A.H., Mulligan, C.N., Heavy metals uptake mechanisms in a fixedbed column by calcium-treated anaerobic biomass, Process Biochemistry 41 (2006) 187- 198.

Chubar, N., Carvalho, J.R., Corcia, M.J.N., Cork biomass as biosorbent for Cu (II), Zn(II) and Ni (II) Colloids and Surfaces A: Physicochemical and Engineering Aspects 230 (2004) 57- 65

Conrad, K., Hansen, H.C.B., Sorption of zinc and lead on coir Bioresource Technology 98 (2007) 89- 97

Romera, E., Gonzalez, F., Ballester, A., Blazquez, M.L., Munoz, J.A., Comparative study of biosorption of heavy metals using different type of algae Bioresource Technology 98 (2007) 3344- 3353.

Ozsoy, H.D., Kumbur, H., Saha, B., Leeuwen, J.H., Use of Rhizopus oligosporus produced from food processing wastewater as a biosorbent for Cu (II) ions removal from the aqueous solutions Bioresource Technology 99 (2008) 4943- 4948

Namasivayam, C., Kavita, D., Removal of congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigment 54 (2002) 47–58.

Ho, Y.S., Huang, C.T., Huang, H.W., Equilibrium sorption isotherm for metal ions on tree fern, Process Biochemistry 37 (2002) 1421- 1430

Shukla, S.R., Pai, R.S., Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres, Bioresource Technology 96 (2005) 1430-1438

Shukla, S.R., Pai, R.S., Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust, Separation and Purification Technology 43 (2005) 1-8.

Turnalı, S., Akar, T., Zn(II) biosorption properties of Botrytis cinerea biomass, Journal of Hazardous Materials B131 (2006) 137-145

Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M., Zhou, H., Tan, Z., Wing, X., Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics, Journal of Hazardous Materials 160 (2008) 655-661.

Kumar, Y.P., King, P., Prasad, V.S.R.K., Zinc biosorption on Tectona grandis L.f. leaves biomass: Equilibrium and kinetic studies, Chemical Engineering Journal 124 (2006) 63-70.

Wang, F.Y., Ma, C.M., Wu, W.J., Kinetic parameters of thermal degradation of polyethylene glycol-toughened novolac-type phenolic resin, Journal of Applied Polymer Science 80 (2001) 188-196

Trick, K.A., Saliba, T.E., Mechanisms of the pyrolysis of phenolic resin in a carbon/ phenolic composite, Carbon. 33 (1995) 1509-1515


Refback'ler

  • Şu halde refbacks yoktur.


Telif Hakkı (c) 2016 Ahmet Lütfü Uğur, Ali Erdoğmuş, Mahmure Ü. Özgür

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.