Termoplastik matrisli karbon elyaf takviyeli kompozit malzemelerin üretim sürecinde indüksiyonla ısıtmanın etkileri

Öner Haşim Olgun, Uğur Çavdar

Öz


Termoplastik matrisli kompozitler, mekanik özelliklerinin yanında üretim maliyetleri ve çevresel nedenlerle gün geçtikçe daha çok tercih edilmektedir.  Üretim sürecini kısaltarak tasarruf sağlamak üzere ısıtma prosesinin hızlandırılması amacıyla, indüksiyonla ısıtma yönteminin termoplastik matrisli kompozitler üzerindeki etkileri önemli bir araştırma konusu oluşturmaktadır.  Bu çalışmada indüksiyonla ısıtma yöntemi ile termoplastik matrisli kompozit malzemenin geometrisine bağlı olarak istenilen bölgesini, karbon elyaf takviye elemanının ısıl iletkenlik özelliğini kullanarak mevcut teknolojilere göre daha hızlı şekilde yüksek sıcaklıklarda şekillendirilmesine yönelik değişken ve parametreler incelenecektir.  Çalışmada öncelikle indüksiyonla ısıtma yöntemine ilişkin temel bilgiler verilmiş, daha sonra ısıtma prosesine etkiyen unsurlar ve esaslar ile son olarak yöntemdeki parametrelerin değiştirilmesi halinde malzeme üzerindeki etkileri ortaya konmuştur.  Çalışmanın, indüksiyonla ısıtma yöntemi ile termoplastik matrisli kompozitlerin üretiminde daha düşük maliyetli proseslerin oluşturulmasına yönelik araştırmalara kaynak olacağı değerlendirilmektedir.


Tam Metin:

PDF

Referanslar


Bayerl, T., Duhovic, M., Mitschang, P., Bhattacharyya, D., The heating of polymer composites by electromagnetic induction – A review, Composites: Part A, 57, 27-40, (2014).

Menana, H., Féliachi, M., 3-D eddy current computation in carbon-fibre reinforced composites, IEEE Transactions on Magnetics, 45(3), 1008–1011, (2009).

Ramdane, B., Trichet, D., Belkadi, M., Saidi, T., Fouladgar, J., Electromagnetic and thermal modelling of composite materials using multilayer shell elements, IEEE Transactions on Magnetics, 72(5), 1134–1137, (2011).

Chen, S.C., Jong, W.R., Chang, J.A., Dynamic mould surface temperature control using induction heating and its effect on the surface appearance of weld line, Journal of Applied Polymer Science, 101, 1174–1180, (2006).

Kim, S., Shia, C.S., Kim, B.H., Yao, D., Injection moulding nanoscale features with the aid of induction heating, Polymer-Plastics Technology and Engineering, 46, 1031–1037, (2007).

Tanaka, K., Katsura, T., Kinoshita, Y., Katayama, T., Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction, High Performance Structures and Materials IV WIT Transactions on The Built Environment, 97, 211–219, (2008).

Border, J., Salas, R., Induction heated joining of thermoplastic composites without metal susceptors, Proceedings of the 34th international SAMPE symposium, 1989, 2569-2578, (1989).

Stokes, V.K., Experiments on the induction welding of thermoplastics, Polymer Engineering and Science, 43(9), 1523–1541, (2003).

Kagan, V.A., Nichols, R.J., Benefits of induction welding of reinforced thermoplastics in high performance applications, Journal of Reinforced Plastic Composites, 24(13), 1345–1352, (2005).

Knauf, B.J., Webb, D.P., Liu, C., Conway, P.P., Polymer bonding by induction heating for microfluidic applications, Proceedings of the 3rd IEEE international conference on electronics systems and integration technologies (ESTC), Berlin, 8, (2010).

Knauf, B.J., Webb, D.P., Liu, C.C., Conway, P.P., Low frequency induction heating for the sealing of plastic microfluidic systems, Microfluid Nanofluid, 9(2-3), 243–252, (2010).

Shevchenko, N., Fink, B.K., Yarlagadda, S., Tierney, J.T., Heider, D., Gillespie, Jr. J.W., Rapid automated induction lamination (RAIL) for high-volume production of carbon/thermoplastic laminates, Aberdeen Proving Ground: Army Research Laboratory, (2001).

Zach, T., Lew, J., North, T.H., Woodhams, R.T., Joining of high strength oriented polypropylene using electromagnetic induction bonding and ultrasonic welding, Materials Science and Technology, 5, 281–287, (1989).

Ahmed, T.J., Stavroc, D., Bersee, H.E.N., Beukers, A., Induction welding of thermoplastic composites – An overview, Composites: Part A, 37, 1638-1651, (2006).

Miller, A.K., Chang, C., Payne, A., Gur, M., Menzel, E., Peled, A., The nature of induction heating in graphite-fibre, polymer-matrix composite materials, SAMPE Journal, 26 (4), 37-54, (1990).

Yarlagadda, S., Kim, H.J., Gillespie, Jr.J.W., Shevchenko, N.B., Fink, B.K., A study of the induction heating of conductive fibre reinforced composites, Journal of Composite Materials, 36 (4), 401-421, (2002).

Yarlagadda, S., Kim, H.J., Gillespie, Jr.J.W., Shevchenko, N.B., Fink, B.K., Heating mechanisms in induction processing of carbon fibre reinforced thermoplastic prepreg, Proceedings of SAMPE sempozyumu, Long Beach ABD, (Mayıs 2000).

Fink, B.K., McCullough, R.L., Gillespie, Jr.J.W., Experimental verification of models for induction heating of continuous-carbon-fibre composites, Polymer Composites, 17 (2), 198-209, (1996).

Kim, H., Yarlagadda, S., Gillespie, Jr.J.W., Shevchenko, N.B., Fink, B.K., A study on the induction heating of carbon fibre reinforced thermoplastic composites, Advanced Composite Materials, 11 (1), 71-80, (2002).

Puyal, D., Bernal, C., Burdio, J.M., Acero, J., Millan, I., Methods and procedures for accurate induction heating load measurement and characterization, IEEE International Symposium on Industrial Electronics, 805-810, (2007).

Rudolf, R., Mitschang, P., Neitzel, M., Induction heating of continuous carbon-fibre-reinforced thermoplastics, Composites: Part A, 31, 1191-1202, (2000).

Stokes, V.K., Experiments on the induction welding of thermoplastics, Proceedings of the Annual Technical Conference 2001, 1256-1261, (2001).

Rudnev, V., Loveless, D., Cook, R., Black, M., Handbook of induction heating, New York, ABD, Marcel Dekker, (2003).

Gillespie, Jr.J.W., McCulough, R.L., Fink, B.K., Induction heating of cross-ply carbon-fiber composites, Proceedings of the 50th Annual Technical Conference 92, 2106-2109, (1992).

Kim, H.J., Yarlagadda, S., Shevchenko, N.B., Fink, B.K., Gillespie, Jr.J.W., Development of a numerical model to predict in-plane heat generation patterns during induction processing of carbon fiber-reinforced prepreg stacks, Journal of Composite Materials, 37 (16), 1461-1483, (2003).

Rudolf, R., Mitschang, P., Neitzel, M., Welding of high-performance thermoplastic composites, Polymers and Polymer Composites, 7, 309-315, (1999).

O’Shaughnessey, P.G., Dube, M., Villegas, I.F., Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes, Journal of Composites Materials, 50 (21), 2895-2910, (2016).

Hümbert, M., Mitschang, P., Characterization and modification of the temperature distribution during continuous induction welding, 16th European Conference On Composite Materials, Seville, Spain, (Haziran 2014).

Deng, S., Djukic, L., Paton, R., Ye, L., Thermoplastic-epoxy interactions and their potential applications in joining composite structures – A review, Composites: Part A, 68, 121-132, (2015).

Yousefpour, A., Hojjati, M., Immarigeon, J.P., Fusion bonding/welding of thermoplastic composites, Journal of Thermoplastic Composite Materials, 17, 303-339, (2004).


Refback'ler

  • Şu halde refbacks yoktur.


Telif Hakkı (c) 2018 Öner Haşim Olgun, Uğur Çavdar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.