Kesirli telegraf kısmi diferansiyel denklemlerin fark şeması metodu ile nümerik çözümü

Mahmut Modanlı

Öz


Bu çalışmada fark şeması metodu kullanılarak  ın farklı değerleri için Caputo kesirli türevi ile tanımlanan kesirli telegraf kısmi diferansiyel denklemin nümerik çözümü elde edildi. Verilen denklem için fark şemaları oluşturuldu. Denklemin bu fark şeması için kararlı olduğu gösterildi. Örnek problemlerin nümerik çözümleri matlab programı kullanılarak bulundu. Tam çözüm ile yaklaşık çözümler karşılaştırılarak hata analizi yapıldı. Hata analizi tablosundan önerilen metodun etkili olduğu görüldü.


Tam Metin:

PDF

Referanslar


Celik, C. ve Duman M., Crank-Nicholson method for the fractional equation with the Riezs fractional derivative, Journal of computational physics, 231, 1743-1750, (2012).

Gorial, I.I., Numerical methods for fractional reaction-dispersion equation with Riesz space fractional derivative, Engineering. and Techology Journal, 29, 709-715, (2011).

Jafari, H., Gejii, V.D., Solving linear and nonlinear fractional diffusion and wave equations by adomian decomposition, Applied Mathematics and Computation, 180,488-497, (2006).

Karatay, I., Bayramoglu, S.R. ve Sahin, A., Implicit difference approximation for the time fractional heat equation with the nonlocal condition, Applied Numerical Mathematics, 61, 1281-1288, (2011).

Su, L., Wang, W. ve Yang, Z., Finite difference approximations for the fractional advection-diffusion equation, Physics Letters A., 373, 4405-4408, (2009).

Tadjeran, C., Meerschaert, M. M. ve Scheffler, H. P., A Second-order Accurate Numerical Approximation for the Fractional Diffusion Equation, Journal of Computational Physics, 213, 205-213, (2006).

Karatay, I., Kale, N. ve Bayramoglu Erguner, S. R., Stability and Convergence of a Finite Partial Diferential Equations by Matrix Method, International Mathematical Forum, 9, 1757-1765, (2014).

Aslefallah, M., Rostamy, D. ve Hosseinkhani, K., Solving time-fractional differential diffusion equation by theta method, International Journal of Applied Mathematics and Mechanics, 2, 1-8, (2014).

Srivastava, V.K., Awasthi, M K. ve Tamsir, M., RDTM solution of Caputo time fractional-order hyperbolic telegraph equation, AIP advances, 3, 032142, 1-11, (2013).

Ashyralyev, A. ve Dal, F., Finite Difference and Iteration Methods for Fractional Hyperbolic Partial Differential Equations with the Neumann Condition, Discrete Dynamics in Nature and Society, 2012, 1-15, ( 2012).

Akgul, A., Inc, M. ve Baleanu, D., On solutions of variable-order fractional differential equations, An International Journal of Optimization and Control: Theories & Applications, 7(1), 112-116, (2017).

Chen, H., Xu, D., Cao, J. ve Zhou, J., A backward Euler alternating direction implicit difference scheme for the three-dimensional fractional evolution equation, Numerical Methods for Partial Differential Equation, (2017).

Szekeres, B. ve Izsák, F., A finite difference method for fractional diffusion equations with Neumann boundary conditions, Open Mathematics, 13(1), pp. -. Retrieved 21 Feb. (2018), from doi:10.1515/math-2015-0056.

Changpin, L. ve Fanhai, Z., The Finite Difference Methods for Fractional Ordinary Differential Equations, Numerical Functional Analysis and Optimization, 34, 2, 149-179, (2013).

Modanli, M. ve Akgul, A., On solutions to the second-order partial differential equations by two accurate methods, Numerical Methods for Partial Differential Equations, 1-15, (2017).

Ashyralyev, A. ve Modanli, M., An operator method for telegraph partial differential and difference equations, Boundary Value Problems, 2015(1), 1-17, 2015).

Karatay, I., Bayramoglu, S.R. ve Sahin, A., A new difference scheme for time fractional heat equation based on the Crank-Nicholson method, Fractional Calculus and Applied Analysis, 16, 892-910, (2013).

Ashyralyev, A. ve Sobolevskii, P.E., New Difference Schemes for Partial Differential Equations, Birkhauser, Verlag, Basel, Boston, Berlin, (2004).

Kumar, S., A new analytical modelling for fractional telegraph equation via Laplace transform, Applied Mathematical Modelling, 38, 3154-3163, (2014).


Refback'ler

  • Şu halde refbacks yoktur.


Telif Hakkı (c) 2018 Mahmut MODANLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.