Some graph parameters on the strong product of monogenic semigroup graphs

Nihat Akgüneş


In Das et al. (2013), it has been defined a new algebraic graph on monogenic semigroups. Our main scope in this study, is to extend this study over the special algebraic graphs to the strong product. In detail, we will determinate some important graph parameters (diameter, girth, radius, maximum degree, minimum degree, chromatic number, clique number and domination number) for the strong product of any two monogenic semigroup graphs.

Tam Metin:



. Akgunes, N. Cevik, A. S. A new bound of radius of irregularity index, Applied Mathematics and Computation 219, 5750-5753 (2013).

. Akgunes, N. Das, K. C. Cevik, A. S., C., Some properties on the tensor product of graphs obtained by monogenic semigroups, Applied Mathematics and Computation 235, 352-357 (2014).

. Akgunes, N. Das, K. C. Cevik, A. S., Cangul, I. N. Some properties on the lexicographic product of graphs obtained by monogenic semigroups, Journal of Inequalities and Applications, 2013:238, 9 pages.

. Anderson, D. F. and Livingston, P. S., The zero-divisor graph of commutative ring, Journal of Algebra 217, 434-447 (1999).

. Anderson, D. F. and Badawi, A., On the zero-divisor graph of a ring, Communications in Algebra 36(8), 3073-3092 (2008).

. Anderson, D. D., Naseer, M., Beck’s coloring of a commutative ring, Journal of Algebra 159, 500-514 (1991).

. Beck, I., Coloring of commutating Ring, Journal of Algebra 116, 208-226 (1988).

. Das, K. C. Akgunes, N. Cevik, A. S. On a graph of monogenic semigroup, Journal of Inequalities and Application, 2013:44, 13 pages.

. DeMeyer, F. R. and DeMeyer, L., Zero-divisor graphs of semigroups, Journal of Algebra 283, 190-198 (2005).

. DeMeyer, F. R., McKenzie, T., Schneider, K., The zero-divisor graph of a

commutative semigroup, Semigroup Forum 65, 206-214 (2002).

. Doŝlić, T., Ghorbani, M., Hosseinzadeh, M. A., The relationships between Wiener index, stability number and clique number of composite graphs, Bulletin of Malaysian Mathematical Sciences Society (2) 36(1), 165–172 (2013).

. Erdös, P., Pach, J., Pollack, R., Tuza, Z., Radius, diameter, and minimum degree, Journal of Combinatorial Theory B 47, 73-79 (1989).

. Gross, J. L. and Yellen, J., Handbook of graph theory, Chapman Hall, CRC Press (2004).

. Hammack, R. , Imrich W. and Klavžar, S., Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, FL, 2011).

. Imrich, W. Factoring cardinal product graphs in polynomial time. Discrete metric spaces (Villeurbanne, 1996), Discrete Mathematics 192(1-3), 119-144 (1998).

. Imrich, W. and Klavžar, S. Product graphs. Structure and recognition, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, xvi+358 pp. (2000).

. Klavžar, S. Coloring graph products – A survey, Discrete Mathematics 155, 135-145 (1996).

. Yeh, Y.N. , Gutman, I., On the sum of all distances in composite graphs, Discrete Mathematics, 135, 359–365, (1994).

. Žerovnik, J., Chromatic numbers of the strong product of odd cycles, Mathematica Slovaca 56(4), 379–385, (2006).


  • Şu halde refbacks yoktur.

Telif Hakkı (c) 2018 Nihat Akgüneş

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.