La2O3 takviyesinin ve mekanik alaşımlamanın basınçsız sinterlenmiş Al15Si2,5Cu0,5Mg kompozitlerinin mikroyapısal ve mekanik özelliklerine etkisi

Emre Tekoğlu, Duygu Ağaoğulları, Hasan Gökçe, M. Lütfi Öveçoğlu

Öz


Bu çalışmanın amacı, alüminyum esaslı metal matris kompozit malzemelerin (AMMK) lantan oksit (La2O3) partikülleri ile takviyelendirilmek suretiyle toz metalurjisi yöntemleri kullanılarak sentezlenmesi ve bu kompozitlerin mikroyapısal/mekaniksel özellikler açısından karakterize edilmesidir.  Deneysel çalışmalarda, elementel alüminyum (Al), silisyum (Si), bakır (Cu), magnezyum (Mg) ve La2O3 tozları, Al15Si2,5Cu0,5Mg-x La2O3 (x=ağ.% 0,5, 1, 2 ve 5) kompozisyonlarını oluşturacak şekilde harmanlanmış ve bu tozlar 4 sa süre boyunca birbirleri ile mekanik alaşımlanmıştır (MA).  Takiben, harmanlanmış (0 sa MA) ve mekanik alaşımlanmış (4 sa MA) tozlar 450 MPa basınç altında tek eksenli pres kullanılarak soğuk preslenmiş ve preslenen bünyeler 570C’de 2 sa süre ile Ar gazı altında basınçsız olarak sinterlenmiştir.  Harmanlanmış ve mekanik alaşımlanmış tozların ve sinterlenmiş kompozitlerin karakterizasyonları, X-ışınları difraksiyonu (XRD) ve taramalı elektron mikroskobu/enerji dağılımlı spektroskopi (SEM/EDS) teknikleri ile gerçekleştirilmiştir.  Ayrıca, sinterlenmiş numunelerin rölatif yoğunlukları He gazı piknometresi ile saptanmıştır.  Kompozitlere ait Vickers mikrosertlik değerleri ve aşınma kaybı hacimsel miktarları belirlenmiştir.  Deneysel sonuçlara göre, kompozitlere ait mikrosertlik değerleri ve aşınma dirençleri, La2O3 miktarının artmasıyla artış göstermiştir.  4 sa alaşımlanmış ve sinterlenmiş Al15Si2,5Cu0,5Mg-ağ.% 5 La2O3 kompozit malzemenin, tüm kompozisyonlar içerisinde en yüksek sertliğe (172,24±38 HV) ve en düşük aşınma kaybına (0,115 mm3) sahip olduğu bulunmuştur.


Tam Metin:

PDF

Referanslar


Totten, G.E. ve Mackenzie, D.S., Handbook of Aluminum Volume 2 - Alloy Production And Materials Manufacturing, Taylor&Francis, (2003).

Milligan, J., Vintila, R. ve Brochu, M., Nanocrystalline eutectic Al-Si alloy produced by cryomilling, Materials Science and Engineering: A, 508, 43–49, (2009).

Fan, Z., Fang, X. ve Ji, S., Microstructure and mechanical properties of rheo-diecast (RDC) aluminium alloys. Materials Science and Engineering: A, 412, 298–306, (2005).

Kang, N., Coddet, P., Liao, H., Baur, L. ve Coddet, C., Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting, Applied Surface Science, 378, 142-149, (2016).

Pramod, S.L., Bakshi, S.R. ve Murty, B.S., Aluminum-Based Cast In Situ Composites: A Review, Journal of Materials Engineering Performance, 2185–2207, (2015).

Yigezu, B.S., Jha, P.K. ve Mahapatra, M.M., The key attributes of synthesizing ceramic particulate reinforced Al-based matrix composites through stir casting process: A review, Materials Manufacturing Processes, 969–979, (2013).

Wang, Z, Prashanth, K.G., Chaubey, A.K., Löber, L., Schimansky, F.P., Pyczak, F., Zhang, W.W., Sucdino, S. ve Eckert, J., Tensile properties of Al-12Si matrix composites reinforced with Ti-Al-based particles, Journal of Alloys and Compounds, 630, 256–259, (2015).

Chawla, K.K., ve Chawla, N., Metal-Matrix Composites, Springer, 1–25, (2006).

Wang, Z., Tan, J., Scudino, S., Sun, B.A., Qu, B.T., He, J., Prasanth, K.G., Zhang, W.W., Li, Y.Y. ve Eckert, J., Mechanical behavior of Al-based matrix composites reinforced with Mg58Cu28.5Gd11Ag2.5 metallic glasses, Advanced Powder Technology, 25, 2, 635-639, (2014).

Ibrahim, I.A., Mohamed, F.A. ve Lavernia, E.J., Particulate reinforced metal matrix composites - a review. Journal of Materials Science, 1137-1156, (1991).

Maiti R, Chakraborty M. Synthesis and characterization of molybdenum aluminide nanoparticles reinforced aluminium matrix composites, Journal of Alloys and Compounds, 458, 450–456, (2008).

Song MS, Zhang MX, Zhang SG, et al. In situ fabrication of TiC particulates locally reinforced aluminum matrix composites by self-propagating reaction during casting, Materials Science and Engineering: A, 473, 166–171, (2008).

Wang, J., Yi, D., Su, X., Yin, F. ve Li, H., Properties of submicron AlN particulate reinforced aluminum matrix composite, Materials & Design, 30, 78–81 (2009).

Rui-song, J., Wen-hu, W., Guo-dong, S. ve Zeng-qiang, W., Experimental investigation on machinability of in situ formed TiB2 particles reinforced Al MMCs, Journal of Manufacturing Processes, 23, 249–257, (2016).

Karbalaei Akbari, M., Baharvandi, H.R. ve Mirzaee, O., Fabrication of nano-sized Al2O3 reinforced casting aluminum composite focusing on preparation process of reinforcement powders and evaluation of its properties, Composites Part B: Enginering, 55, 426-432, (2013).

Hu, Q., Zhao, H. ve Li, F., Microstructures and properties of SiC particles reinforced aluminum-matrix composites fabricated by vacuum-assisted high pressure die casting, Materials Science and Engineering: A, 680, 270–277, (2017).

Suryanarayana, C., Mechanical alloying and milling, Progress in Materials Science, 46, 1-184, (2001).

Suryanarayana, C., Synthesis of nanocomposites by mechanical alloying, Journal of Alloys and Compounds, 509, s229-s234, (2011).

Benjamin, J.S., Mechanical alloying - A perspective, Metal Powder Report, 45, 122–127, (1990).

Balcı, Ö., Aǧaoǧulları, D., Gökçe, H., Duman, İ. ve Öveçoğlu M.L., Influence of TiB2 particle size on the microstructure and properties of Al matrix composites prepared via mechanical alloying and pressureless sintering, Journal of Alloys and Compounds, 586, s78–s84, (2014).

Sadeghian Z, Lotfi B, Enayati MH, et al. Microstructural and mechanical evaluation of Al-TiB2 nanostructured composite fabricated by mechanical alloying. Journal of Alloys and Compounds, 509, 7758–7763, (2011).

Fogagnolo, J.B., Robert, M.H., Ruiz-Navas, E.M. ve Torralba, J.M., 6061 Al reinforced with zirconium diboride particles processed by conventional powder metallurgy and mechanical alloying, Journal of Materials Science, 39, 127–132, (2004).

Tekoğlu, E., Ağaoğulları, D., Mertdinç, S. ve Öveçoğlu M.L., Effects of reinforcement content and sequential milling on the microstructural and mechanical properties of TiB2 particulate-reinforced eutectic Al-12.6 wt% Si composites, Journal of Materials Science, 53, 2537–2552, (2018).

Guo-Jun, Z., Qian, D., Hao, K., Rui-Hong, W., Liu, G. ve Jun, S., Microstructure and mechanical properties of lanthanum oxide-doped Mo-12Si-8.5B(at%) alloys, Journal of Alloys and Compounds, 577, s493-s498, (2013).

Tekoğlu, E., Ağaoğulları, D., Mertdinç, S., Paksoy, A.H. ve Öveçoğlu M.L., Microstructural characterizations and mechanical properties of NbB2 and VB particulate-reinforced eutectic Al-12.6 wt% Si composites via powder metallurgy method, Advanced Powder Technology, 29, 2070-2081, (2018).


Refback'ler

  • Şu halde refbacks yoktur.


Telif Hakkı (c) 2018 Emre Tekoğlu, Duygu Ağaoğulları, Hasan Gökçe, M. Lütfi Öveçoğlu

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.