Mn, Co, Ni, Cu ve Zn esansiyel-eser elementlerinin bileşikleri için kütle soğurma katsayıları, atomik, moleküler ve elektronik tesir kesitleri, etkin atom numaraları ve elektron yoğunluklarının deneysel incelenmesi

Burcu Akca

Öz


Bu çalışmada, canlıların yaşamında kilit rol oynayan Mn, Co, Ni, Cu ve Zn esansiyel-eser elementlerinin bileşiklerinin (MnF3, MnBr2, CoCl2, CoF2, Co(NO3)2, NiF2, NiSO4, CuSO4, CuF2, CuI, ZnC4H6O4 ve ZnSO4.7H2O) kütle soğurma katsayıları Enerji Ayrımlı X-ışını Floresans Spektrometresi (EDXRFS), yüksek çözünürlüklü bir Si(Li) detektör ve 59,54 keV enerjiye sahip bir Am-241 nokta kaynak kullanılarak ölçülmüştür.  Ölçülen kütle soğurma katsayıları kullanılarak atomik, moleküler, elektronik tesir kesitleri, etkin atom numaraları ve elektron yoğunlukları belirlenmiştir.  Elde edilen deneysel sonuçlar WinXCom ve FFAST programlarının teorik değerleriyle karşılaştırılmıştır.  Deney sonuçları, her iki teorik program sonuçlarıyla uyum gösterse de, karışım kuralı mantığına dayanmayan FFAST programının daha iyi sonuç verdiği gözlenmiştir.


Tam Metin:

PDF

Referanslar


Preira M.O., Carvalho Conti C., Anjos M. J., Lopes R.T., Correction of radiation absorption on biological samples using Rayleigh to Compton scattering ratio, Nuclear Instruments and Methods in Physics Research B, 280, 39–44, (2012).

Jackson D.F., Hawkes D.J., X-ray attenuation coefficients of elements and mixtures, Physics Reports, 70(3), 169-233, (1981).

Manohara S.R., Hanagodimath S.M., Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV–100 GeV, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 258(2), 321-328,(2007).

Vishwanath P. S., Badiger N. M., Effective atomic numbers of dosimetric interest organic compounds, Indian Journal of Pure & Applied Physics, 54, 333-338, (2016).

Athanassiadis K.N., Determination of the Effective Atomic Numbers of Light Composite Materials, I2MTC 2009 - International Instrumentation and Measurement Technology Conference, Singapore, 5-7 May (2009).

Manohara, S. R.,. Hanagodimath, S. M, Thing, K. S., Gerward, L., The effective atomic number revisited in the light of modern photon-interaction cross-section databases, Applied Radiation and Isotopes, 68(4-5), 784-787, (2010).

Kumar, T., K., Venkataratnam, S., Reddy, K., V., Effective atomic number studies in clay minerals for total photon interaction in the energy region 10 keV-10 MeV. Radiation Physics and Chemistry, 48(6), 707-710, (1996).

Parasad, S., G., Parthasaradhi, K., Bloomer, W., D., Effective atomic numbers for photoabsorption in alloys in the energy region of absorption edges. Radiation Physics and Chemistry, 53(5), 449-453, (1998).

Kerur B. R., Thontadarya S. R., Hanumaiah B., Measurement of X-ray mass attenuation coefficients using mixed radiation emitters, Indian Journal of Physics, 67A (2), 163-167, (1993).

Gopinathan Nair K. P., Umesh T. K., Gowda R., Total Attenuation Cross Sections Of Several Amino Acids At 661.6, 1173 And 1332.5 keV, Radiation Physics and Chemistry ,45(2), 231-233, (1995).

Bhandal G. S., Singh K., Total And Partial Mass Attenuation Coefficients And Effective Atomic Number Studies In Different Solid State Nuclear Track Detectors, Radiation Physics and Chemistry, Vol., 47(1), 109-116, (1996).

Shivaramu R.A., Ramprasath V., Effective Atomic Numbers and Mass Attenuation Coefficients of Some Thermoluminescent Dosimetric Compounds for Total Photon Interaction, Nuclear Science And Engineering, 132, 148–153, (1999).

Erzeneoğlu S., İçelli O., Gürbulak B., Ateş A., Measurement of mass attenuation coefficients for holmium doped and undoped layered semiconductors InSe at different energies and the validity of mixture rule for crystals around the absorption edge, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 102(3), 343-347, (2006).

İçelli O., Erzeneoğlu S., Boncukçuoğlu R., Determination of molecular, atomic, electronic cross-sections and effective atomic number of some boron compounds and TSW, Nuclear Instruments and Methods in Physics Research Section B: Beam Interaction with Materials and Atoms, 266(14), 3226-3230, (2008).

Raje D .V., Chaudhari L. M., Mass Attenuation Coefficients of Soil Samples in Maharashtra State (India) by Using Gamma Energy at 0.662 MeV, Bulgarian Journal of Physics, 37, 158–164, (2010).

Gounhalli S.G., Shantappa A., Hanagodimath S. M., Studies on Mass Attenuation Coefficient, Effective Atomic Numbers and Electron Densities of Some Narcotic Drugs in the Energy Range 1KeV -100GeV, Journal of Applied Physics, 2( 4), 40-48, (2012).

Akça B., Erzeneoğlu S., The Mass Attenuation Coefficients, Electronic, Atomic, and Molecular Cross Sections, Effective Atomic Numbers, and Electron Densities for Compounds of Some Biomedically Important Elements at 59.5 keV, Science and Technology of Nuclear Installations, 2014, 1-8, (2014).

Böke A., The photon interaction cross sections of human cortical bone tissue, Chinese Journal of Physics, 55( 6), 2165-2172, (2017).

Parsons P. J., Barbosa F. J., Atomic spectrometry and trends in clinical laboratory medicine, Spectrochimica Acta, 62(9), 992–1003, (2007).

Gillian, L., Jack, D., F., Benjamin, G., David, E., N., Patrick, J., P., John, S., NCCLS, Control of pre-analytical variation in trace element determinations; approved guideline. 19087 USA, (1997).

Zheng Y, Li X K, Wang Y, Cai L., The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: Therapeutic effects by chelators, Hemoglobin, 32(1-2), 135–145, (2008).

Jackson D.F., Hawkes D.J., X-ray attenuation coefficients of elements and mixtures. Physics Reports, 70, 169–233, (1981).

Gerward, L., Guilbert, N., Jensen, K. B., Levring, WinXCom-a program for calculating X-ray attenuation coefficients, Radiation Physics and Chemistry, 71, 653-654, (2004).

Gerward, L., Guilbert, N., Jensen, K. B., Levring, H., X-ray absorption in matter. Reengineering XCOM. Radiation Physics and Chemistry, 60(1-2), 23-24, (2001).

Gowda, S., Krishnaveni, S., Gowda, R., Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30-1333 keV, Nuclear Instruments and Methods in Physics Research B, 239(4), 361-369, (2005).

Chantler, C. T., Olsen, K., Dragoset, R. A., Chang, J., Kishore, A. R., Kotochigova, S. A., Zucker, D. S., X-ray form factor, attenuation and scattering tables (Version 2.1). “http://physics.nist.gov/ffast”, National Institute of Standards and Technology (NIST) (2005).

Baltaş, H., Çevik, U., Determination of the effective atomic numbers and electron densities for YBaCuO superconductor in the range 59.5–136 keV, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(7), 1127-1131, (2008).

İçelli, O., Erzeneoğlu, S., Boncukçuoğlu, R., Measurement of mass attenuation coefficients of some boron compounds and the trommel sieve waste in the energy range 15.746- 40.930 keV, Journal of Quantitative Spectroscopy and Radiative Transfer, 78, 203-210, (2003).

İçelli, O., Erzeneoğlu, S., The mass attenuation coefficients in some vanadium and nickel compounds, Journal of Quantitative Spectroscopy & Radioactive Transfer, 88, 519–524, (2004).


Refback'ler

  • Şu halde refbacks yoktur.


Telif Hakkı (c) 2019 Burcu Akca

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.